【发布部门】国家原子能机构等 | 【发文字号】公告2018年第1号 |
【发布日期】2018年6月27日 | 【实施日期】2018年10月1日 |
【法律类别】货物贸易限制 | 【效力层级】规范性文件 |
【时 效 性】现行有效 |
国家原子能机构、商务部、外交部、海关总署公告第2018年第1号 发布《核出口管制清单》
根据《中华人民共和国核出口管制条例》,现发布经修订的《核出口管制清单》,本清单自2018年10月1日起实施。
国家原子能机构
商 务 部
外 交 部
海 关 总 署
2018年6月27日
说 明
一、总说明
下述各段适用于《核出口管制清单》:
(一)本清单中所说明的各个物项既包括未使用过的物项,亦包括使用过的物项。
(二)如果对本清单中任何物项的说明不含限制条件或技术规格,这种说明是指该物项的全部品种。
(三)当设施的设计、建造或运行过程所依据的物理过程或化学过程与本清单中确定的相同或相似时,该设施应被视为与受管制设施“同种型号”。
(四)不应由于部件的转让而排除对这类物项的管制。
二、技术控制
(一)“技术”转让根据《中华人民共和国核出口管制条例》的规定进行管制。与本清单所列物项直接有关的“技术”将在我国法律法规允许的范围内受到与物项同样严格程度的审查和管制。
(二)对“技术”转让的管制不适用于“公开”资料或“基础科学研究”资料。
三、关于软件的说明
(一)为“研制”、“生产”或“使用”本清单所列任何物项而专门设计或开发的“软件”转让将在我国法律法规允许的范围内受到与物项同样严格程度的审查和管制。
(二)“软件”转让应与“技术”转让采用同样的管制原则。
四、定义
1.“公共使用的”是指已经公开使用的“技术”或“软件”,而对其进一步传播可以不加限制(包括受版权限制的“技术”或“软件”)。
2.“基础科学研究”是指主要为获得关于现象和可观察到的事实的基本原理的新知识而从事的实验性或理论性工作,此类工作主要不是针对某一具体的实际目的或目标。
3.“技术”是指本清单所列物项的“研发”、“生产”或“使用”所要求的特定资料。这些资料可以采用“技术数据”或“技术援助”的形式。其中,“研发”涉及“生产”前的各个阶段:设计、设计研究、设计分析、设计概念、样机的装配和试验、小规模试生产计划、设计数据、把设计转换成产品的过程、结构设计、总体设计、布置等;“生产”是指建造、生产工程、制造、合成、组装(装配)、检查、试验、质保等各个阶段;“使用”是指运行、安装(包括现场安装)、维护(校核)、修理、大修和翻修等;“技术数据”可以采用蓝图、平面图、图表、模型、公式、工程设计和技术规格、手册与规程等形式,被写入或记录在诸如磁盘、磁带、只读存储器等器件或其他载体;“技术援助”可以采用规程、技能、培训、操作知识和咨询服务等形式,可以包括“技术数据”的转让。
4.“软件”是指载入于有形媒介中的一个或多个“程序”或“微程序”,其中“程序”是指电子计算机可执行的或可转换成可执行某一过程的指令序列;“微程序”是指保存在一个特殊的存储器里的基本指令序列,通过把其参考指令引入指令寄存器开始执行该基本指令序列。
5.“其他元素”是指氢、铀和钚以外的所有元素。
五、单位
本清单使用国际单位制(SI)。在任何情况下,国际单位制规定的物理量应被认为是正式建议的管制值。本清单相关国际单位通常使用的缩写符号(及其表示量值的前缀)如下(按字母顺序):
A - 安培 Å - 埃 ℃ - 摄氏度 cm - 厘米 cm2 - 平方厘米 cm3 - 立方厘米 °- 度 g - 克 g0 - 重力加速度 (9.80665米/秒2) GHz - 千兆赫 GPa - 吉帕 h - 小时 H - 亨利 MPa - 兆帕 μm - 微米 N - 牛顿 nm - 纳米 Ω - 欧姆 |
Hz - 赫兹 J - 焦耳 K - 开[尔文] kg - 千克 kHz - 千赫兹 kJ - 千焦耳 kPa - 千帕 kW - 千瓦 m - 米 m2 - 平方米 m3 - 立方米 mA - 毫安 min - 分钟 mm - 毫米 Pa - 帕[斯卡] s - 秒 ″- 弧秒 V - 伏 VA - 伏安 |
第一部分 核材料
核材料系指源材料和特种可裂变材料。其中:
1. 源材料系指天然铀、贫化铀和钍,呈金属、合金、化合物或浓缩物形态的上述各种材料。但不包括:
(1)政府确信仅用于非核活动的源材料;
(2)在一个自然年(1月1日至12月31日)内向某一接受国出口:
①少于500kg的天然铀;
②少于1000kg的贫化铀;
③少于1000kg的钍。
2. 特种可裂变材料系指钚-239、铀-233、含同位素铀-235或铀-233或兼含铀-233和铀-235其同位素总丰度与铀-238的丰度比大于自然界中铀-235与铀-238的丰度比的铀,以及含有上述物质的任何材料,包括核燃料组件。但不包括:
(1)钚-238同位素丰度超过80%的钚;
(2)克量或克量以下用作仪器传感元件的特种可裂变材料;
(3)在一个自然年(1月1日至12月31日)内向某一接受国出口少于50有效克的特种可裂变材料。
第二部分 核设备和反应堆用非核材料
1. 核反应堆和为其专门设计或制造的设备和部件
按语
各种类型的核反应堆,无论其按所用慢化剂(如石墨、重水、轻水、无慢化剂)、核反应堆内中子谱(如热中子、快中子)、所用冷却剂类型(如水、液态金属、熔盐、气体)为特征,或以功能类型(如动力堆、研究堆、试验堆)为特征进行区分。上述所有类型的核反应堆都属于本条款范围并受本条款所有可适用分项管控。本条款的控制范围不包括聚变反应堆。
一个“核反应堆”基本上包括反应堆容器内或直接安装在其上的物项、控制堆芯功率水平的设备和通常含有或直接接触或控制反应堆堆芯一次冷却剂的部件。
物项1.2涵盖的核反应堆容器不分压力等级,包括反应堆压力容器和排管容器。物项1.2包括反应堆压力容器顶盖,它是工厂预制的反应堆容器的主要部件。
上述物项能够进行有载操作或利用技术先进的定位或准直装置进行复杂的停堆装料操作,例如通常不可能直接观察或接近燃料的操作。
专门设计或制造用于控制上述1.1定义的核反应堆裂变过程的棒、支承结构或悬吊结构、棒驱动机或棒导向管。
注释
压力管是燃料通道的一部分,按设计在高压下运行,压力有时超过5MPa。
在核反应堆中使用的锆金属管或锆合金管含铪与锆的重量之比通常低于1:500。
专门设计和制造的泵或循环泵包括水冷堆泵、气冷堆循环泵以及液态金属冷却堆用电磁泵和机械泵。这种设备可包括防止一次冷却剂渗漏的精密密封或多种密封的系统、全密封驱动泵,及有惯性质量系统的泵。这一定义包括鉴定为NC-1或相当标准的泵。
“核反应堆内部构件”是反应堆容器内的主要结构,具有一种或多种功能,例如支承堆芯、保持燃料对准、引导一次冷却剂流向、为反应堆容器提供辐射屏蔽层、导向堆芯内仪表。
蒸汽发生器是专门设计或制造用于将反应堆内生成的热量(一回路侧)输送到进水(二回路侧)以产生蒸汽。对有一个中间回路的快堆的情况,除蒸汽发生器外,用于将一回路侧的热量输送到中间冷却回路的热交换器理所当然地属于控制范围以内。在气冷堆中,可利用热交换器向驱动燃气轮机的二次气体回路传热。本条款的控制范围不包括反应堆支持系统如应急冷却系统和衰变热冷却系统的热交换器。
本条款的范围包括用于测定大量程范围中子通量的堆芯内和堆芯外探测器,典型地从每平方厘米每秒104个中子或更高。堆芯外意指那些上述1.1定义的核反应堆堆芯外,但是位于生物屏蔽层内的仪器。
“外热屏蔽体”是置于反应堆容器上方的主要结构,用于减少反应堆的热损失和降低安全壳内的温度。
2. 反应堆用非核材料
任一接受方在任何一个自然年(1月1日至12月31日)内收到的供上述1.1定义的核反应堆用的数量超过200kg氘原子的氘、重水(氧化氘)以及氘与氢原子之比超过1∶5000的任何其他氘化物。
σB和σZ分别为自然界形成的硼和元素Z的热中子俘获截面(巴为单位),AB和AZ分别为自然界形成的硼和元素Z的原子质量。
一个“辐照燃料元件后处理厂”包括通常直接接触和直接控制辐照燃料和主要核材料以及裂变产物工艺液流的设备和部件。可以通过采取各种避免临界(例如通过几何形状)、辐射照射(例如通过屏蔽)和毒性危险(例如通过安全壳)的措施来确定这些过程,包括钚转换和钚金属生产的完整系统。
这种设备能切开燃料包壳,使辐照核材料能够被溶解。专门设计的金属切割机是最常用的,当然也可能采用先进设备,例如激光器。
溶解器通常接受切碎了的乏燃料。在这种临界安全的容器内,辐照核材料被溶解在硝酸中,而剩余的壳片从工艺液流中被去掉。
溶剂萃取器既接受溶解器中出来的辐照燃料的溶液,又接受分离铀、钚和裂变产物的有机溶液。溶剂萃取设备通常设计得能满足严格的运行参数,例如很长的运行寿命,无需维修或易于更换,操作和控制简便以及可适应工艺条件的各种变化。
(c)在将纯硝酸钚溶液转到下几个工艺步骤前先将其浓缩并贮存。尤其是,钚溶液的保存或贮存容器要设计得能避免由于这种液流浓度和形状的改变导致的临界问题。
本条款的范围不包括为核材料衡算和保障或与辐照燃料元件后处理厂自动化流程控制系统的结合和共同使用无关的任何其他应用设计的中子探测和测量仪器。
第(3)项典型的包括设备用于:(a)细棒(或棒)端塞焊缝X射线检测,(b)充压细棒(或棒)的氦检漏,(c)细棒(或棒)的γ射线扫描以检验内部燃料芯块的正确装载。
可以认为属于为铀同位素分离“专门设计或制造的(除分析仪器外的)设备”这一概念范围的设备物项包括:
与其他离心机不同,浓缩铀用的气体离心机的特点是:在转筒室中有一个(或几个)盘状挡板和一个固定的管列用来供应和提取UF6气体,其特点是至少有三个单独的通道,其中两个与从转筒轴向转筒室周边伸出的收集器相连。在真空环境中还有一些不转动的关键物项,它们虽然是专门设计的,但不难制造,也不是用独特材料制造的。不过,一个离心机设施需要大量的这种构件,因此其数量是能够反映最终用途的一个重要指标。
(c)适合于复合结构用的纤维材料,其比模量应为3.18×106m或更高,比极限抗拉强度应为7.62×104m或更高(“比模量”是用N/m2表示的杨氏模量除以用N/m3表示的比重;“比极限抗拉强度”是用N/m2表示的极限抗拉强度除以用N/m3表示的比重)。
专门设计或制造的管件,它们用来借助皮托管作用(即利用一个例如扳弯径向配置的管的端部而形成的面迎转筒内环形气流的开口)从转筒内部提取UF6气体,并且能与中心气体提取系统相连。
以上所列一些物项不是直接接触UF6工艺气体就是直接控制离心机和直接控制这种气体从离心机到离心机以及从级联到级联的通路。耐UF6腐蚀的材料包括铜、铜合金、不锈钢、铝、氧化铝、铝合金、镍或含镍60%以上的合金以及氟化的烃聚合物。
(d)“产品”和“尾料”器,用来把UF6收集到容器中。
专门设计或制造用于在离心机级联中操作UF6的管路系统和集管系统。管路网络通常是“三头”集管系统,每个离心机连接一个集管头。这样,在形式上有大量重复。全都用耐UF6的材料(见本节注释)制成或用这种材料进行保护并且按很高的真空和净度标准制造。
专门设计或制造的阀,典型的包括波纹管密封阀、速动封闭阀、速动阀和其他阀。
4. 有一个适合于同位素分析的收集系统。
2. 高稳定性(频率控制优于0.2%)。
用气体扩散法分离铀同位素时,主要的技术组件是一个特制的多孔气体扩散膜、用于冷却(经压缩过程加热的)气体的热交换器、密封阀和控制阀以及管道。由于气体扩散技术使用的是六氟化铀(UF6),所有的设备、管道和仪器仪表(与气体接触的)表面都必须用同UF6接触时能保持稳定的材料制成。一个气体扩散设施需要许多这样的组件,因此其数量是能够反映最终用途的一个重要指标。
(b)为制造这种过滤膜而专门制备的化合物或粉末。这类化合物和粉末包括镍或含镍60%(或以上)的合金、氧化铝或纯度99.9%(或以上)的耐UF6的完全氟化的烃聚合物(见5.4款注释),粒度小于10μm,粒度高度均匀。这些都是专门为制造气体扩散膜制备的。
专门设计或制造的密闭式容器,用于容纳气体扩散膜,由耐UF6的材料(见5.4款注释)制成或用这种材料进行保护。
专门设计或制造的压缩机或鼓风机,吸气能力为1m3UF6/min或更大,出口压力高达500kPa,其被设计成在UF6环境中长期运行。这种压缩机和鼓风机的压力比10:1或更低,用耐UF6的材料(见5.4款注释)制成或用这种材料进行保护。
专门设计或制造的真空密封装置,有密封式进气口和出气口,用于密封把压缩机或鼓风机转子同传动马达连接起来的转动轴,以保证可靠的密封,防止空气渗入充满UF6的压缩机或鼓风机的内腔。这种密封装置通常设计成将缓冲气体泄漏率限制到小于1000cm3/min。
专门设计或制造的用耐UF6材料(见5.4款注释)制成或保护的热交换器,在压差为100kPa下渗透压力变化率小于10Pa/h。
耐UF6腐蚀的材料包括铜、铜合金、不锈钢、铝、氧化铝、铝合金、镍或含镍60%以上的合金以及氟化的烃聚合物。
以下所列物项直接接触UF6气体或直接控制级联中的气流:
(d)“产品”器或“尾料”器,用来把UF6收集到容器中。
这种管路网络通常是“双头”集管系统,每个扩散单元连接一个集管头。
(b)专门设计的在含UF6气氛中使用的真空泵,用耐UF6腐蚀的材料制成或保护(见本条款注释)。这些泵可以是旋转式或正压式,可有排代式密封和碳氟化合物密封并且可以有特殊工作流体存在。
专门设计和制造的由耐UF6材料制成或保护、手动或自动的波纹管密封阀、截流阀和控制阀,用来安装在气体扩散浓缩工厂的主系统和辅助系统中。
4. 有一个适合于同位素分析的收集系统。
本节所列物项不是直接接触UF6流程气体就是直接控制级联中的这种气流。所有接触流程气体的表面,均需用耐UF6材料制成或用耐UF6材料保护。就本节有关气动浓缩物项而言,耐UF6腐蚀的材料包括:铜、铜合金、不锈钢、铝、氧化铝、铝合金、镍或含镍60%或以上(按重量计)的合金以及氟化的烃聚合物。
专门设计或制造的分离喷嘴及其组件。分离喷嘴由一些狭缝状、曲率半径小于1mm的耐UF6腐蚀的弯曲通道组成,喷嘴中有一分离楔尖能将流过该喷嘴的气体分成两部分。
供料气体在涡流管的一端切向进入涡流管,或通过一些旋流叶片,或从沿涡流管周边分布的若干个切向位置进入涡流管。
专门设计或制造的用耐UF6/载气(氢或氦)混合气腐蚀材料制成或加以保护的压缩机或鼓风机。
专门设计或制造的带有密封式进气口和出气口的转动轴封,用于密封把压缩机或鼓风机转子同驱动马达连接起来的转动轴,以保证可靠的密封,防止过程气体外漏或空气或密封气体渗入充满UF6/载气混合气的压缩机或鼓风机内腔。
专门设计或制造的用耐UF6腐蚀材料制成或加以保护的热交换器。
专门设计或制造的用耐UF6腐蚀的材料制成或加以保护的用作容纳涡流管或分离喷嘴的分离元件外壳。
(d)“产品”器或“尾料”器,用于把UF6收集到容器中。
专门为操作气动级联中的UF6设计或制造的用耐UF6腐蚀材料制成或保护的集管管路系统。这种管路系统通常是“双头”集管系统,每级或每个级组连接一个集管头。
(b)为在含UF6气氛中工作而专门设计或制造的用耐UF6腐蚀的材料制成或保护的真空泵。这些泵也可用氟碳密封和特殊工作流体。
专门设计或制造的由耐UF6腐蚀材料制成或保护的直径为40mm或更大的可手动或自动的波纹管密封阀、截流阀和控制阀,用来安装在气动浓缩工厂的主系统和辅助系统中。
4. 有一个适合于同位素分析的收集器系统。
(d)能冻结分离出UF6的冷阱。
在固-液离子交换过程中,浓缩是由铀在一种特制的作用很快的离子交换树脂或吸附剂上的吸附/解吸完成的。使铀的盐酸溶液和其他化学试剂,从载有吸附剂填充床的圆筒形浓缩柱中通过。就一个连续过程而言,需要有一个回流系统,以便把从吸附剂上解吸下来的铀返回到液流中,这样便可收集“产品”和“尾料”。这是通过使用适宜的还原/氧化化学试剂来完成的。这些试剂可在单独的外部系统中完全再生,并可在同位素分离柱内部分地再生。由于在这种工艺过程中有热的浓盐酸溶液存在,使用的设备应该用专门的耐腐蚀材料制造或保护。
为使用化学交换过程的铀浓缩工厂专门设计或制造的有机械动力输入的逆流液-液交换柱。为了耐浓盐酸溶液的腐蚀,这些交换柱及其内部构件一般用适宜的塑料(例如氟碳聚合物)或玻璃制作或保护。交换柱的级停留时间一般被设计得很短(30秒或更短)。
为使用化学交换过程的铀浓缩工厂而专门设计或制造的液-液离心接触器。此类接触器利用转动来达到有机相与水相的分散,然后借助离心力来分离开这两相。为了耐浓盐酸溶液的腐蚀,这些接触器一般用适当的塑料(例如碳氟聚合物)或玻璃来制造或保护。离心接触器的级停留时间被设计得很短(30秒或更短)。
这些系统由以下设备组成:将有机相流中的U+4反萃取到水溶液中的溶剂萃取设备,完成溶液pH值调节和控制的蒸发设备和(或)其他设备,以及向电化学还原槽供料的泵或其他输送装置。一个重要的设计问题是要避免水相流被某些种类的金属离子沾污。因此,对该系统那些接触这种过程物流的部分,要用适当的材料(例如玻璃、碳氟聚合物、聚苯硫酸酯、聚醚砜和用树脂浸过的石墨)制成或保护的设备来构成。
这些系统由进行纯化所需的溶解设备、溶剂萃取设备和(或)离子交换设备,以及用来将U+6或U+4还原为U+3的电解槽组成。这些系统产生只含几个ppm的铬、铁、钒、钼和其他两价或价态更高的阳离子金属杂质的氯化铀溶液。处理高纯度U+3系统的若干部分的建造材料包括玻璃、碳氟聚合物、聚苯硫酸酯或聚醚砜塑料衬里的石墨和用树脂浸过的石墨。
(b)使水与盐酸分离开来,以便水和加浓了的盐酸可在适当位置被重新引入工艺过程的设备。
为以离子交换过程进行铀浓缩而专门设计或制造的快速反应离子交换树脂或吸附剂包括:多孔大网络树脂,和(或)薄膜结构(在这些结构中,活性化学交换基团仅限于非活性多孔支持结构表面的一个涂层),以及处于包括颗粒或纤维在内的任何适宜形式的其他复合结构。这些离子交换树脂/吸附剂的直径有0.2mm或更小,而且在化学性质上必须能耐浓盐酸溶液腐蚀,在物理性质上必须有足够的强度因而在交换柱中不被降解。这些树脂/吸附剂是专门为实现很快的铀同位素交换动力学过程(低于10秒的交换速率减半期)而设计的,并且能在373-473K(100-200℃)的温度范围内操作。
为以离子交换过程进行铀浓缩而专门设计或制造的用于容纳和支撑离子交换树脂/吸附剂填充床层的直径大于1000mm的圆柱。这些柱一般用耐浓盐酸溶液腐蚀的材料(例如钛或碳氟塑料)制成或保护,并能在373-473K(100-200℃)的温度范围内和高于0.7MPa的压力下操作。
离子交换浓缩过程可使用例如Fe+3作为氧化剂,在这种情况下,所用氧化系统将通过氧化Fe+2来使Fe+3再生。
本节所列的许多物项将直接接触铀金属蒸气、液态金属铀,或由UF6或UF6和其他气体的混合物组成的过程气体。所有与铀或UF6接触的表面,都全部由耐腐蚀材料制造或保护。就有关基于激光的浓缩的物项而言,耐铀金属或铀合金蒸气或液体腐蚀的材料包括:氧化钇涂敷石墨和钽;耐UF6腐蚀的材料包括:铜、铜合金、不锈钢、铝、氧化铝、铝合金、镍或镍含量60%(按重量计)或以上的合金和氟化的烃聚合物。
这些系统可能含有电子束枪,设计供到靶上的功率(1kW或更大)足以按激光浓缩功能要求的速率产生铀金属蒸气。
液态金属铀处理系统可包括坩埚及其冷却设备。这种系统的坩埚和其他接触熔融铀、熔融铀合金或铀金属蒸气的部分,要用有适当的耐腐蚀和耐高温性能的材料制成或保护。适当的材料可包括钽、氧化钇涂敷石墨、用其他稀土氧化物(见《核两用品及相关技术出口管制清单》)或其混合物涂敷的石墨。
这些组件的部件由耐铀金属蒸气或液体的高温和腐蚀性的材料(例如氧化钇涂敷石墨或钽)制成或保护。这类部件可包括用于磁、静电或其他分离方法的管、阀、管接头、“出料槽”、进料管、热交换器和收集板。
这些外壳有多种样式的开口,用于供电线路、供水管、激光束窗、真空泵接头及仪器仪表诊断和监测。这些开口均设有开闭装置,以便整修内部的部件。
专门设计或制造的超声膨胀喷嘴,用于冷却UF6与载气的混合气至150K(-123℃)或更低的温度。这种喷嘴耐UF6腐蚀。
例如,产品收集器的作用是收集浓缩UF5固态材料。这种收集器可包括过滤式、冲击式或旋流式收集器,或其组合;并且耐UF5/UF6环境的腐蚀。
为在UF6环境中长期操作而专门设计或制造的UF6/载气混合气压缩机。这些压缩机中与过程气体接触的部件用耐UF6腐蚀的材料制成或保护。
专门设计或制造的带密封进气口和出气口的转动轴封,用于密封把压缩机转子与驱动马达连接起来的转动轴,以保证可靠的密封,防止过程气体外漏,或空气或密封气体漏入充满UF6/载气混合气的压缩机内腔。
这些系统是为将所收集的UF5粉末氟化为UF6而设计的。其UF6随后将被收集于产品容器中,或作为进料被转送到为进行进一步浓缩而设置的MLIS单元中。在一种方案中,这种氟化反应可在同位素分离系统内部完成,以便一离开“产品”收集器便反应和回收。在另一种方案中,UF5粉末将被从“产品”收集器中移出/转送到一个适当的反应容器(例如流化床反应器、螺旋反应器或火焰塔式反应器)中进行氟化。在这两种方案中,都使用氟气(或其他适宜的氟化剂)贮存和转送设备,以及UF6收集和转送设备。
4. 有一个适合于同位素分析的收集器系统。
(d)“产品”器或“尾料”器,用于把UF6收集到容器中。
载气可为氮、氩或其他气体。
在以激光为基础的浓缩过程中有重要意义的激光器和激光部件包括《核两用品及相关技术出口管制清单》中所列的那些激光器和激光部件。激光系统一般包含用于管理激光束(一个或多个)和向同位素分离室发射激光束的光学和电子部件。AVLIS过程使用的激光系统通常由两个激光器组成:一个铜蒸气激光器或某些固体激光器和一个可调染料激光器。MLIS使用的激光系统通常由一个CO2激光器或受激准分子激光器和一个多程光学池(两端有旋转镜)组成。这两种过程使用的激光器或激光系统都需要有一个谱频稳定器以便能够长时间地工作。
在等离子体分离过程中,铀离子等离子体通过一个调到铀-235 离子共振频率的电场,使铀-235离子优先吸收能量并增大它们螺旋状轨道的直径。具有大直径径迹的离子被捕集从而产生铀-235 被浓集的产品。由电离的铀蒸气组成的等离子体被约束在由超导磁体产生的高强度磁场的真空室内。这个过程的主要技术系统包括铀等离子体发生系统、带有超导磁体(见《核两用品及相关技术出口管制清单》)的分离器组件和用于收集“产品”和“尾料”的金属移出系统。
为产生或加速离子专门设计或制造的微波动力源和天线,具有以下特性:频率高于30GHz,且用于产生离子的平均功率输出大于50kW。
专门设计或制造的射频离子激发线圈,用于高于100kHz的频率并能够输送的平均功率高于40kW。
为产生铀等离子体专门设计或制造的系统,供等离子体分离浓缩厂使用。
专门设计或制造的用于固态铀金属的“产品”和“尾料”收集器组件。这类收集器组件由抗热和抗铀金属蒸气腐蚀的材料构成或由这类材料作防护层,例如有钇涂层的石墨或钽。
这种外壳有多种形式的开口,用于供电线路、扩散泵接头及仪器仪表诊断和监测。这些开口设有开闭装置,以便整修内部部件;它们由适当的非磁性材料例如不锈钢构成。
在电磁过程中,由一种盐原料(典型的是四氯化铀)离子化产生的金属铀离子被加速并通过一个能使不同同位素离子沿不同轨迹运动的磁场。电磁同位素分离器的主要部件包括:同位素离子束分散/分离用的磁场、离子源及其加速系统和收集经分离的离子的系统。这个过程的辅助系统包括磁体供电系统、离子源高压供电系统、真空系统以及产品回收及部件的清洁/再循环用多种化学处理系统。
专门设计或制造的磁极块,直径大于2m,用来在同位素电磁分离器内维持恒定磁场并在毗连分离器之间传输磁场。
为离子源专门设计或制造的高压电源,具有以下所有特点:能连续工作,输出电压为20000V或更高,输出电流为1A或更大,电压稳定性在8小时内高于0.01%。
专门设计或制造的高功率直流磁体电源,具有以下所有特点:能在100V或更高的电压下持续产生500A或更大的电流输出,电流或电压稳定性在8小时内高于0.01%。
专门设计或制造用于利用GS法或氨-氢交换法生产重水的设备物项包括如下:
专门设计或制造用于利用GS法生产重水的交换塔。该塔直径1.5m或更大,能够在大于或等于2MPa压力下运行。
专门为利用GS法生产重水而设计或制造的用于循环硫化氢气体(即含H2S70%以上的气体)的单级、低压头(即0.2MPa)离心式鼓风机或压缩机。这些鼓风机或压缩机的气体通过能力大于或等于56 m3/s,能在大于或等于1.8MPa的吸入压力下运行,并有对湿H2S介质的密封设计。
专门设计或制造用于利用氨-氢交换法生产重水的氨-氢交换塔。该塔高度大于或等于35m,直径1.5m至2.5m,能够在大于15MPa压力下运行。这些塔至少都有一个用法兰联接的轴向孔,其直径与交换塔筒体直径相等,通过此孔可装入或拆除塔内构件。
专门为利用氨-氢交换法生产重水而设计或制造的塔内构件和多级泵。塔内构件包括专门设计的促进气/液充分接触的多级接触装置。多级泵包括专门设计的用来将一个接触级内的液氨向其他级塔循环的水下泵。
专门设计或制造的用于利用氨-氢交换法生产重水的氨裂化器。该装置能在大于或等于3MPa的压力下运行。
能在氘浓度等于或高于90%的情况下“在线”分析氢/氘比的红外吸收分析器。
专门设计或制造的用于利用氨-氢交换法生产重水时将浓缩氘气转化成重水的催化燃烧器。
通常采用水蒸馏技术从轻水中分离重水的这些系统是专门设计或制造用于由浓度较低的重水原料生产反应堆级重水的(即典型地99.75%氧化氘)。
这些转换器或合成器从氨/氢高压交换塔获得合成气体(氮和氢),而合成氨则返回到交换塔里。
只有遵照《中华人民共和国核出口管制条例》所规定的程序才能出口本条款范围之内的成套主要设备。在本条款范围之内的所有工厂、系统和专门设计或制造的设备可用于处理、生产或使用特种可裂变材料。
铀转化厂和系统可以对铀进行一种或几种转化使其从一种化学状态转变为另一种化学状态,包括:从铀矿石浓缩物到UO3的转化;从UO3到UO2的转化;从铀的氧化物到UF4或UF6的转化;从UF4到UF6的转化;从UF6到UF4的转化;从UF4到金属铀的转化;以及从铀的氟化物到UO2的转化。铀转化工厂所用许多关键设备物项与化学加工工业的若干生产工序所用设备相同。例如,这些过程中使用的各类设备可以包括:加热炉、回转炉、流化床反应器、火焰塔式反应器、液体离心机、蒸馏塔和液-液萃取塔。不过,这些物项中很少有“现货”供应,大部分将须按用户要求和规格制造。在某些情况下,为了适应所处理的一些化学品(HF、F2、ClF3和各种铀的氟化物)的腐蚀性质,需要作专门的设计和建造考虑。最后应该指出,在所有铀转化过程中,那些单独地看不是为铀转化专门设计或制造的设备物项,可被组装成专门为铀转化而设计或制造的系统。
从铀矿石浓缩物到UO3的转化可通过以下步骤实现:首先,用硝酸溶解铀矿石浓缩物,用磷酸三丁酯之类溶剂萃取纯化的硝酸铀酰;然后,硝酸铀酰通过浓缩和脱硝转化为UO3,或用气态氨中和产生重铀酸铵,接着通过过滤、干燥和煅烧转化为UO3。
从UO3到UF6的转化可以直接通过氟化实现。该过程需要一个氟气源或三氟化氯源。
从UO3到UO2的转化,可以用裂解的氨气或氢气还原UO3来实现。
从UO2到UF4的转化,可以用氟化氢气体(HF)在300—500℃与UO2反应来实现。
从UF4到UF6的转化,可以用氟气在塔式反应器中与UF4发生放热反应来实现。使流出气体通过一个冷却到-10℃的冷阱把热的流出气体中的UF6冷凝下来。该过程需要一个氟气源。
从UF4到金属铀的转化,可用镁(大批量)或钙(小批量)还原UF4来实现。还原反应一般在高于铀熔点(1130℃)的温度下进行。
从UF6到UO2的转化,通常是燃料制造厂的第一个工序。
从UF6到UF4的转化,是用氢还原实现的。
从UO2到UCl4转化可通过两个流程之一。在第一个流程中,在大约400℃的温度下,UO2与四氯化碳(CCl4)发生反应。在第二个流程中,在大约700℃的温度下,以及存在炭黑(CAS1333-86-4)、一氧化碳的条件下,UO2与氯发生反应产生UCl4。
钚转化厂和系统可以对钚进行一种或几种转化使其从一种化学状态转化为另一种化学状态。包括,从硝酸钚到PuO2的转化;从PuO2到PuF4的转化;以及从PuF4到钚金属的转化。通常钚转化厂与后处理设施相关,但是,也可能与钚燃料元件制造设施相关。许多钚转化厂的关键设备物项与化学加工工业的若干生产工序所用设备相同。例如,这些过程中使用的各类设备可以包括:加热炉、回转炉、流化床反应器、火焰塔式反应器、液体离心机、蒸馏塔和液-液萃取塔。也需要热室、手套箱和遥控机械手。但是,这些物项很少有“现货”供应,大部分须按用户的要求和规格制造。对与钚有关的特殊的放射性、毒性和临界危险特别仔细的设计是关键的。在某些情况下,为了适应所处理的一些化学品(例如HF)的腐蚀性质,需要作专门的设计和建造考虑。最后应该注意,在所有的钚转化流程中,那些单独地看不是为钚转化专门设计或制造的设备物项,可被组装成专门为钚转化而设计或制造的系统。
该流程包括的主要功能为:流程供料贮存和调料、沉淀和固-液分离,煅烧、产品处理、通风、废物管理,以及流程控制。流程系统经过特别的设计,以避免发生临界和辐射效应,以及使得毒性危险最小。在大多数后处理设施中,这一流程包括将硝酸钚转化到氧化钚。其它流程可能包括草酸钚或过氧化钚的沉淀。
该流程通常包括氧化钚的氟化,通常以高腐蚀性的氢氟酸来生产氟化钚,而后用高纯钙金属还原生成金属钚和氟化钙残渣。该流程所包括的主要功能是氟化(例如,包括采用贵重金属制造的或作为内衬的设备)、金属还原(例如,使用陶瓷坩埚)、残渣回收、产品处理、通风、废物管理和流程控制。流程系统经过特别的设计,以避免发生临界和辐射效应,以及使得毒性危险最小。其它流程包括草酸钚或过氧化钚的氟化,然后还原至金属。
分送: |
国务院办公厅,国务院各部委、各直属机构,各省、自治区、直辖市国防科技工业管理部门,深圳市国防科工办,各省、自治区、直辖市、计划单列市及新疆生产建设兵团商务主管部门,海关总署广东分署,海关总署天津、上海特派办,各直属海关,各进出口商会,中国核能行业协会。 |
|
中国国家原子能机构 2018年9月18日印发 |
||